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that benzene is much more likely to decompose than to desorb 
as the temperature is raised (only about 2% desorb intact):8 this 
indicates that the tightly bound benzene will more likely distort 
and break its ir-ring stabilization than remain intact. Also, 
coadsorption of potassium, a net electron donor, decreases the 
likelihood of decomposition, at least on Pt(I H).35 Therefore, 
we may tentatively propose that coadsorption of CO, a net electron 
acceptor, would enhance the decomposition of benzene by favoring 
distortion. Furthermore, a detailed analysis36 of the benzene 
decomposition products upon heating on Rh(111) (namely -CH 
and -CCH species) favors acetylene as an intermediate product, 
even if short-lived. 

Rh, unlike Pd, does not catalyze the conversion of acetylene 
to benzene. Whereas such a reaction has been observed on Pd-
(111),3 it was not seen on the Rh(111) single-crystal surface. It 
is, however, most encouraging that the benzene-to-acetylene 
conversion appears to have been observed recently for the first 
time:4 indeed, Raman spectroscopy detected acetylene formation 
after benzene adsorption on supported Rh particles in the presence 
of coadsorbed CO in an ultra-high vacuum cell. 

Hopefully, structural results such as ours for benzene on Rh-
(111) and others in preparation on Pt(111) and Pd(111) will help 
clarify the mechanisms of this reaction. 

5. Conclusions 
We have made the first structural analysis of a molecular 

coadsorbate system. It is characterized by mutual ordering and 

(34) Dubois, L. H.; Castner, D. G.; Somorjai, G. A. /. Chem. Phys. 1980, 
72, 5234. 

(35) Garfunkel, E. L.; Maj, J. J.; Frost, S. C; Farias, M. H.; Somorjai, 
G. A. J. Phys. Chem. 1983,87, 3629. Crowell, J. E., Ph.D. Thesis, University 
of California, 1984. 

(36) Koel, B. E.; Crowell, J. E.; Bent, B. E.; Mate, C. M.; Somorjai, G. 
A., unpublished results. 

The transition metal-ligand chemical bond has been described 
as being the key to linking organometallic chemistry, surface 
chemistry, and catalysis.1 In particular, metal-ligand bond 
energies provide a means of assessing whether a proposed reaction 
pathway is energetically feasible. We recently reported that 
photodissociation shows promise as a method for obtaining this 
information,2 complementing the growing number of theoretical3 

and experimental4 techniques. 

(1) Schaefer, H. F., Ill Ace. Chem. Res. 1977, 10, 287. 
(2) Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106, 6176. 
(3) (a) Alvarado-Swaisgood, A. E.; Allison, J.; Harrison, J. F. J. Phys. 

Chem. 1985, 89, 2517. (b) Shim, I.; Gingerich, K. A. J. Chem. Phys. 1982, 
77, 2490. (c) Harris, J.; Jones, R. O. J. Chem. Phys. 1979, 70, 830. 

site shifting of the coadsorbate species, benzene and CO. We have 
found the first confirmed hollow-site adsorption of CO on a sin­
gle-crystal surface, with bond lengths that are quite consistent 
with comparable bond lengths in metal-carbonyl clusters. 

The benzene is also hcp-hollow-sited and its carbon ring exhibits 
a strong Kekule-type distortion and an expansion. This result may 
be connected with the mechanisms of acetylene-benzene inter-
conversion reactions on metal catalysts. 

We have recently also analyzed37 the Rh(111)-(3 X 3)-C6H6 

+ 2CO system with LEED intensities. It differs from the Rh-
(IH)-(3J)-C6H6 + CO system described here mainly in the 
presence of two rather than one CO molecules per unit cell. The 
structural results are essentially identical: hep hollow sites for 
benzene and CO and the same Kekule distortion for benzene. The 
optimal numerical values for the bond lengths are somewhat 
different: short and long C-C bond lengths of 1.48 ±0.15 and 
1.58 ± 0.15 A, respectively. This agreement, using totally in­
dependent LEED data bases, gives additional confidence in our 
results. 
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In order for an ion to photodissociate, process 1, first the ion 

AB+ + hv — A+ + B (1) 

must absorb a photon, second the photon energy must exceed the 
enthalpy for the reaction, and third the quantum yield for pho­
todissociation must be non-zero.5,6 Because of these requirements, 
thresholds observed in the photodissociation spectrum are governed 
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Abstract: Photodissociation of MCH2
+ (M = Fe, Co) is observed to yield three products M+, MC+, and MCH+. This result 

is in contrast to the low-energy collision-induced dissociation of MCH2
+, which yields M+ exclusively. From the photoappearance 

thresholds of the products, the following bond energies are assigned: /5"(Co+-CH2) = 84 ± 5 kcal/mol, Z>°(Co+-CH) = 
100 ± 7 kcal/mol, ZJ°(Co+-C) = 90 ± 7 kcal/mol, .0"(Fe+-CH2) = 82 ± 5 kcal/mol, 0"(Fe+-CH) = 101 ± 7 kcal/mol, 
and Z)°(Fe+-C) = 94 ± 7 kcal/mol. Compared to the results of an earlier ion-beam study, the Co+-CH2 bond energy reported 
here is in excellent agreement while the Fe+-CH2 value is significantly lower. 
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Figure 1. (a) The photoappearance spectrum of Co+ obtained by monitoring reaction 3 as a function of wavelength at a pressure of 1 X XCr6 torr of 
argon. All spectra shown here are averages of four separate trials to verify peak positions and peak heights, (b) The photoappearance spectra of CoCH+ 

(open circles) and CoC+ (closed circles) obtained by monitoring reactions 4 and 5, respectively, as a function of wavelength at 1 X 1(T6 torr of argon. 
The relative intensity of these photoproducts has been scaled relative to the photoappearance of Co+ in spectrum a, which was assigned to be 1.0 at 
320 nm. (c) The photodissociation spectrum of CoCH2

+ obtained by monitoring the appearance of all three photoproducts (reactions 3-5) as a function 
of wavelength at 1 X 10"6 torr of argon. 

either by thermodynamic or by spectroscopic factors. A spec-
troscopically determined threshold (determined by ion absorption) 
yields an upper limit to the reaction enthalpy, whereas a ther-
modynamically determined threshold (determined by bond 
strength(s)) by definition can provide an absolute reaction en­
thalpy. Preliminary studies on a variety of simple metal ion-ligand 
complexes2,7 and metal dimer ions8 suggest that these species 
absorb over a broad wavelength region, yielding thermodynam-
ically determined thresholds from which absolute bond energies 
can be obtained. 

Transition metal-carbene ions have been the focus of several 
recent gas-phase studies9"12 and are of interest due to the role that 

(7) Hettich, R. L.; Jackson, T. C; Stanko, E. M.; Freiser, B. S. /. Am. 
Chem. Soc., in press. 
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(10) 0"(Fe+-CH2) from: Armentrout, P. B.; Halle, L. F.; Beauchamp, 
J. L. J. Am. Chem. Soc. 1981,103, 6501. C(Co+-CH2) from: Armentrout, 
P. B.; Beauchamp, J. L. J. Chem. Phys. 1981, 74, 2819. 

(11) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 2605. 

metal-carbenes play as intermediates in a number of important 
catalytic transformations. In particular, experimental values of 
ZJO(Fe+-CH2) = 96 ± 5 kcal/mol and Z)°(Co+-CH2) = 85 ± 7 
kcal/mol, determined with an ion beam instrument, have been 
reported.10 More recently, ion-molecule reaction studies have 
suggested that D0 (Fe+-CH2) may be between 77 and 87 kcal/ 
mol.11 The photodissociation of MCH2

+ (M = Fe, Co) was, 
therefore, examined in an effort to obtain values for the bond 
energies as well as spectral information about the metal-carbene 
ions. 

Experimental Section 
All experiments were performed on a prototype Nicolet FTMS-1000 

Fourier transform mass spectrometer13 equipped with laser ionization for 
generating metal ions.14 The 5.2 cm cubic cell, which is situated between 
the poles of a Varian 15-in. electromagnet maintained at 0.85 T, utilizes 

(12) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 4373. 
(13) Burnier, R. C; Cody, R. B.; Freiser, B. S. Anal. Chem. 1982, 54, 96. 
(14) Burnier, R. C; Byrd, G. D.; Carlin, T. J.; Wise, M. B.; Cody, R. B.; 

Freiser, B. S. Lecture Notes in Chemistry; Wanczek, K. P., Ed.; Springer-
Verlag: West Germany, 1982. 
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Figure 2. (a) The photoappearance spectrum of Fe+ obtained by monitoring reaction 3 as a function of wavelength at a pressure of 1 X 10"6 torr of 
argon, (b) The photoappearance spectra of FeCH+ (open circles) and FeC+ (closed circles) obtained by monitoring reactions 4 and 5, respectively, 
as a function of wavelength at 1 X 10"* torr of argon. The FeC+ spectrum has been multiplied by a factor of 5. The relative intensity of these 
photoproducts has been scaled relative to the photoappearance of Fe+ in spectrum a, which was assigned to be 1.0 at 260 nm. (c) The photodissociation 
spectrum of FeCH2

+ obtained by monitoring the appearance of all three photoproducts (reactions 3-5) as a function of wavelength at 1 x 10"* torr 
of argon. 

two 80% transmittance stainless steel screens as the transmitter plates 
in order to permit irradiation of the trapped ions.2 FeCH2

+ and CoCH2
+ 

were synthesized, as shown in reaction 2 by pulsing in ethylene oxide,15'1* 
and then trapped for 4-5 s. During this time they were irradiated with 

0 
M+ + ZA — - MCH2

+ + CH2O 

(M . F e . Co) 

(21 

a 2.5 kW Hg-Xe arc lamp used in conjunction with a 0.25-m Schoeffel 
monochromator set for 10-nm resolution. The concentration of the ions 
in the cell at ~10"18 M precludes monitoring the absorption spectrum 
directly. The photodissociation spectrum is obtained by monitoring the 
fragmentation of the MCH2

+ ions as a function of wavelength. Poor 
reproducibility of the laser (shot-to-shot variation) made monitoring the 
disappearance of the parent ion impractical. Because of this, the ratio 
of ion photoproduct intensities to parent ion intensity is monitored as a 

(15) Ethylene oxide was pulsed into the cell to provide a lower background 
pressure during the trapping time. For details of the pulsed valve operation, 
see: Carlin, T. J.; Freiser, B. S. Anal. Chem. 1983, 55, 571. 

(16) Photodissociation of MCH2
+ produced by reaction of M+ with cy-

cloheptatriene (Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 
67) gave identical spectra to the MCH2

+ produced by reaction 2. 

function of wavelength.7 To obtain absolute values for the cross sections 
of the ions being examined, the photodissociation of C7H8

+ (from toluene 
at 20 eV) at 410 nm (cr(410 nm) = 0.05 A2)17 was compared to the 
photodissociation of a given ion at its Xmax, both taken under similar 
experimental conditions. All cross sections determined in this manner 
have an estimated uncertainty of ±50% due to instrumental variables. 

Results and Discussion 
Photodissociation of M C H 2

+ yields three products, reactions 
3-5, in direct contrast to low-energy (0-100 eV) collision-induced 

MCH, + hv 
M + + CH2 

MCH+ + H 
MC+ + H2 

(3) 
(4) 
(5) 

dissociation which results in exclusive cleavage of C H 2 to form 
M + . ' 8 This interesting difference, which is being further in­
vestigated, may arise due to the kinetics of the dissociation pro­
cesses or due to the difference of adding vibrational vs. electronic 
excitation. Figure la shows the photoappearance spectrum of Co+ 

(17) Dunbar, R. C. Chem. Phys. Lett. 1975, 32, 508. 
(18) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 5870. 
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(process 3);19 Figure lb shows the photoappearance spectra of 
CoCH+ and CoC+ (processes 4 and 5); and Figure Ic shows the 
overall photoappearance spectrum combining all three photo-
products. Figure Ic indicates that CoCH2

+ has photodissociation 
maxima at 320 ± 10 nm (<r = 0.05 A2) and 370 ± 10 nm with 
a threshold at 400 ± 10 nm. 

The threshold at 390 nm in Figure la for the photoappearance 
of Co+ implies 0"(Co+-CH2) = 73 ± 5 kcal/mol. This value 
is unreasonably low, however, since observation of reaction 2 
requires Z)=(Co+-CH2) > 78 kcal/mol.2021 Adding argon and 
raising the pressure from 1 X 10~8 to 1 X 10"6 torr decreases 
dissociation in the tail region (340-390 nm) while slightly en­
hancing dissociation from 240-330 nm. The significant pressure 
quenching of the tail region might indicate the presence of in­
ternally or kinetically excited CoCH2

+ ions. Alternatively, a 
multiple photon process is believed to be less likely but cannot 
be completely ruled out.22 Presumably, a sufficiently high pressure 
of Ar would, in any event, completely quench the tail, but reduced 
trapping efficiency precluded doing this experiment. The wave­
length at which Ar begins to reduce the photoappearance of Co+ 

and which corresponds to the extrapolated onset of the absorption 
band (X1113x = 320 nm) is about 340 nm. Assuming this to be the 
cutoff for the ground-state ions (or single photon process) yields 
Z)0(Co+-CH2) = 84 ± 5 kcal/mol, consistent with a previously 
reported value Z)=(Co+-CH2) = 85 ± 7 kcal/mol,10 and 
A# f°(CoCH2

+) = 292 ± 7 kcal/mol.20 

Figure lb shows the photoappearance spectra of CoCH+ and 
CoC+, both taken at a pressure of 1 X 10"* torr of argon.23 The 
sharp cutoff for the appearance of CoCH+ at 340 nm yields 
Z)= (CoCH+-H) = 84 ± 5 kcal/mol from which AH(° (CoCH+) 
= 324 ± 7 kcal/mol and D°(Co+-CH) = 100 ± 7 kcal/mol are 
derived. The threshold for the appearance of CoC+ at 400 nm 
yields Z)°(CoC+-H2) = 71 ± 5 kcal/mol from which AHf(CoC+) 

(19) Co+ is the predominant photoproduct from CoCH2
+, as is evident in 

the intensity axes for Figure 1 (SL-C). Similar results are observed for the 
photodissociation of FeCH2

+. 
(20) All heats of formation (and other supplementary values) are taken 

from: Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys. 
Chem. Re/. Data, Suppl. 1 1977, 6. 

(21) Reaction 2 for Co+ was first reported by: Armentrout, P. B.; Beau-
champ, J. L. J. Chem. Phys. 1981, 74, 2819. Reaction 2 is observed for both 
Fe+ and Co+ even when a pulse of argon is admitted into the cell to colli-
sionally cool the laser desorbed metal ions prior to reaction. 

(22) For two-photon processes, see: (a) Freiser, B. S.; Beauchamp, J. L. 
Chem. Phys. Lett. 1975, 35, 35. (b) Orlowski, T. E.; Freiser, B. S.; Beau-
champ, J. L. Chem. Phys. 1976, 16, 439. 

(23) Increased argon pressure did not affect peak positions but did quench 
the tail in each case by 10-30 nm. 

= 363 ± 7 kcal/mol, Z)°(CoC+-H) = 91 ± 10 kcal/mol, and 
Z)°(Co+-C) = 90 ± 7 kcal/mol are derived. 

Figure 2 shows the photoappearance spectra derived from 
FeCH2

+ in analogy to those from CoCH2
+. The cross section for 

photodissociation of FeCH2
+ at 260 nm in Figure 2c is 0.12 A2. 

Once again the photoappearance spectrum of Fe+ (Figure 2a) 
displays a pressure-dependent tail. Adding Ar decreases the 
photoappearance of Fe+ in the tail region from 350 to 430 nm 
while enhancing the Fe+ signal in the region from 240 to 340 nm. 
The latter result indicates that ground-state ions do photodissociate 
in the 240-340-nm region and therefore we assign a cutoff of 350 
nm, yielding Z)=(Fe+-CH2) = 82 ± 5 kcal/mol and A//f°-
(FeCH2

+) = 292 ± 5 kcal/mol. The earlier reported value of 
Z)°(Fe+-CH2) = 96 ± 5 kcal/mol seems high on the basis of the 
intense photoappearance of Fe+ at 340 nm even in the presence 
of argon, which requires Z)°(Fe+-CH2) < 84 kcal/mol.24 The 
photodissociation result, however, is consistent with the 77-87-
kcal/mol range suggested from ion-molecule studies." 

The photoappearance threshold for FeCH+ at 350 nm (Figure 
2b) implies D"(FeCH+-H) = 82 ± 5 kcal/mol from which 
AZ/f=(FeCH+) = 322 ± 7 kcal/mol and Z)=(Fe+-CH) = 101 ± 
7 kcal/mol are derived. Similarly, the photoappearance threshold 
for FeC+ (Figure 2b) at 430 nm gives Z)°(FeC+-H2) = 66 ± 5 
kcal/mol from which AZZf=(FeC+) = 358 ± 7 kcal/mol, Z)0-
(FeC+-H) = 88 ± 10 kcal/mol, and Z)=(Fe+-C) = 94 ± 7 
kcal/mol are derived. 

The values determined in this study compare favorably with 
Z)=(V+-CH) = 115 ± 5 kcal/mol and Z)=(V+-C) = 88 ± 5 
kcal/mol obtained from a separate study.25 
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